1) The figure below shows the test feature ‘is_negative' at the call to ‘compare_functions'. In
the call, | pass "agent n.is_negative" as the argument, where 'n' is a JJ_BIG_NATURAL_8.

Feature il-big_numbers BIG_NATURAL TESTS s negaive 4 & & O ! [f3/ocijosed: PRECONDITION_VIOLATION raised
[o= g KVE N A S wagass | @
ot viow Ol oAl IoN e A9 0BTV 0 Clos# - - it compare_func... BIG_NATUR... BIG_NATUR™ 1
is_negative g Is_negative —_BIG_NATUR... BIG NATUR .. 5
-- Tests the corresponding feature from JJ BIG_NATURAL. ISThegalve BIG NAIUR e=tAIUR... |1
local run_all BIG_NATUR... BIG_NATUR... 2
fn: STRING_8 make BIG_NATUR... BIG NATUR... 8+1

n: like number_ anchor
i: INTEGER 32

do

@) fn := "is_negative"

from
@) i=1

until
o i > test_limit

loop
O n := new_random number (word limit)
(=} compare_ functions (agent n.is_negative, True, fn, ARRAY [ANY] <<>>)
O i =4+ 1 I

end
O end

[

[« [2]
4~ Feature| @ Class
Objects (BIG_NATURAL_B_TEST'é')".'i's_negative v X% k@& RO W.. » RO
Name | Value Type Address Expression .
| ¢ Exception raised target_closed: PREC...
[+~ Current object <0x7FD0O6E380D48> BIG_NATURAL_8_TESTS 0x7FDO6E380D48 '
=4 Locals

is_negative STRING_8 0x7FD0O6E380D50

1 INTEGER_.

-595901053 JJ_BIG_NATURAL_8 0x7FD06E380D88

However, inside feature ‘compare_functions', the argument is not a JJ_BIG_NATURAL_8; it is a
BIG_NATURAL_8_TEST, which is the type of the enclosing class at the call to
‘compare_functions'. Hence it fails on the precondition. ?????

Feature ji_big_numbers BIG_NATURAL_8_TESTS compare_functions « » & (1 5% I(;;;;'&0;'";;5'5&5}'TT(;',\"";/"I’OL A&
F\V!_E iz etz KA B In Feature In Class
t view of feature “compare_functions' lass BIG_! _TESTS T BIG ATV
compare functions (a_routine: ROUTINE; a_expected: ANY; a name: STRING 8; a_args: ARRAY [ANY]) is_negative BIG_NATURAL ¢
" -- Compare the result of “a_routine from {JJ_BIG_NUMBER} to the one of: is_negative BIG_NATURAL_8_TEST||
- 1) if “a expected™ is a ROUTINE, the result of executing a run_all BIG_NATURAL_8_TEST
- call to that routine, or make BIG_NATURAL_DEMO
- 2) if NOT a ROUTINE, the result of calling out on that argument.
-- Return the result of the comparison, possibly printing (depending
-- on is_terse) the result of executing “a routine” (and the expected
-- value if they don't match).
-- Arguments "a_name’ and "a_args are only used to output the signature
-- of “a_function.
-- (from BIG_NATURAL_TESTS)
-- (export status {NONE})
require -- from BIG_NATU. —
® target_closed: attdched {like number_anchor} a_routine.target
o other_ target_closed: a i S attached {like number anchor} r.target
{0 arguments_closed: a_routine.open count = 0
1© other_arguments_closed: attached {ROUTINE} a_expected as r implies r.open count = 0
local
s: STRING_8 =
(=] I2]
& Feature| @ Class
Objects {BIG_NATURAL_8 TESTS}. compare functions ., x & .1 0: @ & % (J &% Watch 0B /PAKLLBXAYNEROR
Name |Value Type Ad| Expression
¢ Exception raised target_closed: PREC...
[+~ Current object <0x7FDO6E380D48> BIG_NATURAL_8 TESTS 0x7|
=~ Arguments
$f a_routine <0x7FDO6E380CFO> PREDICATE [TUPLE] 0x7,
< Agent ¢ is_negative
8 calc_rout_... 0x0 TER
44 closed_op... <Ox7FDOGEGBODFE> TUPLE [IBIG_NATURAL_8_TESTS, 1JJ_BIG_NATURAL_8] Dx7,
8 encaps_ro... 0x10ED9OFEO
8 is_basic False BOOLEAN
9 is_target_c... True BOOLEAN
8 lact racilt Falea RONIEAN

2) Feature ‘set_with_array' was giving strange results in the debugger. In the debugger the
three circled values in the picture below were all different; they should have been the same, as
they are now. Argument ‘a_array' came in with certain values but the value assigned to 'd' was
different; when that value was placed into Current, it was again a different value. Then, |
noticed that the local variable "place' was never used, and | had no idea why | had put that
there, so | deleted that line. Now the procedure works! | then | put the unused local back in
(i.e. undo edit) and, wow, the procedure STILL works as expected; | now cannot reproduce the
error. 777

Flat view of feature “set_with_array' of class JJ_BIG_NATURAL_8 T mm—— [
set_with_array (a_array: ARRAY [like word]) L set_with_arr.... o JJ_BIG_NAT..
- ~- set the words from “a array , where the array holds set_with_array BIG_NATUR..
-- intended words with high-order words first. set_with_array BIG_NATUR..
-- (from JJ_BIG_NATURAL) run_all BIG_NATUR..
require -- from JJ BIG_NATURAL make BIG_NATUR..
@) array_exists: a_array /= Void
o array_not_empty: not a_array.is_empty What is this?
local After deleting this unused local, this
i: INTEGER 32 procedure seems to work fine. 22?2
d: like word But after replacing the line, the error is no
place: JJ_BIG_NATURAL_ 8 longer happening. 2?7
do
o wipe_out
from
O i := a_array.count
until
@) i<
loop
(*] d := a_array [1i]
*] extend (a_array [i])
e i:=1-1 Before deleting “place":
o end on entry, a_array [4] was 242.
end After assignment, “d' became 168.
Extending into Current added some other
[4] value [don't remember what that value
4= Feature| @ Class was, because it works now.]
Obijects (JJ_BIG_NATURAL_8}.set with aray . x & @ @ & 052 .. »» a8
Name | Value Type | Addr2] Expression '

<, count 1 ray.i
<, capacity 0
¢ 0 NATURAL_8
+—dp, Once routi

[+, Constants

- 8 index 0 INTEGER_32
|- 8 is_negative False BOOLEAN
I— § is_unstable False BOOLEAN
|- 8 object_comp... False BOOLEAN

[+, Once routines
[+, Constants
=4 Arguments

I a_array <0x7F846AB80D38> ARRAY [NATURAL_8] 0x7F.
- area count=4, capacity=4 SPECIAL [NATURAL_8] Ox7F.
4 count 4
EQ capacity 4
%0 187 NATURAL_8 Ox7F.
L s 1 133 NATURAL_8 OxX7F.

T@-i}} 2 35 NATURAL_8 O0x7F.
- i3 @ NATURAL_8 O0x7F.
+—d4s, Once ro...
+—4s, Constants

|- 8 lower 1 INTEGER_32
|- 8 object_co... False BOOLEAN
|- 8 upper 4 INTEGER_32

[+4p, Once routi...
[+4s, Constants

=4 Locals
TE $#d NATURAL_8 Ox7F.

S INTEGER_32

i place Void JJ_BIG_NATURAL Void =

I | 51| 5 Watch|>: 2 Call Stack |] AutoTest | | F

